Relationship Between Insulin Sensitivity and Carotid Artery Intima-Media Thickness in Healthy Subjects: The RISC Study

Michaela Kozakova, Ele Ferrannini and the RISC Investigators* Department of Internal Medicine, University of Pisa, Pisa, Italy

Background

- Experimental and clinical studies have suggested that insulin resistance, or its in vivo compensatory equivalent, hyperinsulinaemia, may initiate or sustain cardiovascular disease.
- However, there is currently no evidence for a direct relationship between insulin resistance and atherosclerosis or cardiovascular disease. Previous studies have used surrogate markers of insulin resistance in cohorts of subjects with multiple risk factors.

Objectives

- To test whether there is a direct link between insulin resistance and atherosclerosis in a low-risk Caucasian population.
- To establish whether the development of early atherosclerotic

Characteristics of Study Population

 1 146 subjects satisfying inclusion criteria completed baseline euglycaemic clamp and US examination of carotid arteries.

male/female age (years) smokers	503/643 44 ± 8 605	
	mean ± SD	range
BMI (kg.m ⁻²) Waist circ. (cm) Total Cholesterol (mmol/L) LDL-Cholesterol (mmol/L) HDL-Cholesterol (mmol/L) Triglycerides (mmol/L) SBP (mmHg)	$25 \pm 4 \\86 \pm 13 \\4.8 \pm 0.9 \\2.9 \pm 0.8 \\1.4 \pm 0.4 \\1.1 \pm 0.6 \\117 \pm 12 \\74 \pm 8$	(17-44) (49-147) (2.8-7.7) (0.8-6.1) (0.3-2.9) (0.3-4.5) (79-139) (50-89)

changes over time is accelerated in insulin-resistant healthy subjects.

Design

Relationship Between Insulin Sensitivity and Cardiovascular Disease Risk: (RISC) Study

- Relation of insulin sensitivity to intima-media thickness (IMT) of carotid arteries, a surrogate marker of systemic atherosclerotic load, at baseline and after 3-years of follow-up.
- In this report, baseline, cross-sectional data are presented.
- Over 1 500 subjects were recruited at 19 centres in 14 European countries and are being followed-up.

Participating Centres

Pisa London Amsterdam Newcastle Lyon Odense Dublin Perugia

Malmö Rome Glasgow Vienna Madrid Athens Milan Belgrade

Results

	mean ± SD	range
fasting glucose (mmol/L)	5.1 ± 0.6	(2.7–6.8)
insulin fasting (pmol/L)	34 ± 19	(3–147)
2-hour glucose (mmol/L)	5.7 ± 1.5	(2.2 - 10.4)
2-hour insulin (pmol/L)	200 ± 207	(10–3332)
M value (µmol.min ⁻¹ .kg _{fm} ⁻¹)	57 ± 24	(12–189)
IMT _{CCA} (µm)	599 ± 86	(380–963)
IMT _{Bulb} (µm)	764 ± 143	(328–1568)
IMT _{ICA} (µm)	617 ± 128	(337–1300)
IMT _{AVRG} (µm)	663 ± 102	(444–1182)

Main Determinants of IMT_{AVRG}

sex	+40 ± 6 μ m for male sex
age	+53 ± 3 μ m per 10 years
waist	+24 ± 3 μ m per 10 cm
BMI	+5.7 ± 0.7 μ m per unit
SBP	+23 ± 2 μm per 10 mmHg
LDL-Cholesterol	+39 ± 4 μm per mmol/L
glucose	+40 ± 5 μm per mmol/L

Study Population

1 569 subjects recruited.

age	30–60 years
blood pressure	<140/<90 mmHg
total cholesterol	<7.8 mmo/L
triglycerides	<4.6 mmo/L
fasting glucose	<7.0 mmo/L
2-hour glucose	<11.1 mmo/L

 Exclusions: cardiovascular disease, chronic illness, significant (>40%) carotid stenosis.

Baseline Examinations

- Lifestyle and medical history questionnaire.
- Anthropometry.
- Biological samples + oral glucose tolerance test.
- Euglycaemic hyperinsulinaemic (240 pmol.min⁻¹.m⁻²) clamp.
- Ultrasound (US) examination of extracranial carotid arteries.

Kuopio

Relationship Between IMT_{AVRG} and Measures of Insulin Sensitivity

Associations between IMT and 2-hour glucose or M value were statistically significant but weak and were lost after adjustment for the main determinants of IMT.

Conclusions

- In cross-sectional observations in a low-risk population, insulin resistance is not an independent predictor of carotid artery IMT.
- The follow-up phase of the RISC Study will conclusively test whether insulin resistance per se is atherogenic.

*Acknowledgements

B-mode US of Carotid Arteries

 IMT of the near and far arterial wall was measured off-line in digitised images at the level of common carotid artery:

carotid bulb: internal carotid artery:

IMT_{CCA} **IMT**_{Bulb} **IMT_{ICA}** The overall average IMT of all segments was also calculated: **IMT**_{AVRG}

RISC is supported by the European Union (QLG1-CT-2001-01252) and by AstraZeneca.

EGIR-RISC Study Group

Project Management Board:

B Balkau (Villejuif, France); SW Coppack (London, England); JM Dekker(Amsterdam, The Netherlands); E Ferrannini (Pisa, Italy) A Mari (Padova, Italy); A Natali (Pisa, Italy); M Walker (Newcastle, England).

RISC recruitment centres:

Amsterdam, The Netherlands: R.J. Heine, J Dekker, G Nijpels, W Boorsma. Athens Greece: A Mitrakou, S Tournis, K Kyriakopoulou Belgrade, Serbia and Montenegro: N Lalic, K Lalic, A Jotic, L Lukic, M Civcic Dublin, Ireland: J Nolan, TP Yeow, M Murphy, C DeLong, G Neary, MP Colgan Frankfurt, Germany: T Konrad, H Böhles, S Fuellert, F Baer, H Zuchhold Geneva, Switzerland: A Golay, V. Barthassat, V. Makoundou, TNO Lehmann, E. Harsch Bobbioni, T Merminod Glasgow, Scotland: J Petrie, C Perry, F Neary, C MacDougall, K Shields, L Malcolm Kuopio, Finland: M Laakso, U Salmenniemi, A Aura, R Raisanen, U Ruotsalainen, T Sistonen, M Laitinen London, England: SW Coppack, N McIntosh, P Khadobaksh Lyon, France: M Laville, F. Bonnet, A Brac de la Perriere, C Louche-Pelissier, C Maitrepierre, J Peyrat, A Serusclat Madrid, Spain: R. Gabriel, EM Sánchez, R. Carraro, A Friera, B. Novella Malmö, Sweden (1): P Nilsson, M Persson, G Östling, (2): O Melander, P Burri Milan, Italy: PM Piatti, LD Monti, E Setola, F Minicucci, A Colleluori Newcastle-upon-Tyne, England: M Walker, IM Ibrahim, M Jayapaul, D Carman, Y McGrady, D Richardson Odense, Denmark: H Beck-Nielsen, P Staehr, K Hojlund, V Jensen, C Olsen Perugia, Italy: GB Bolli, F Porcellati, C Fanelli, M Romolini, F Calcinaro, A Saturni Pisa, Italy: E Ferrannini, A Natali, E Muscelli, S Pinnola, M Kozakova, L Landucci Rome, Italy: G Mingrone, P Di Rocco, C Guidone, A Favuzzi Vienna, Austria: W Waldhäusl, M Roden, C Anderwald, A Hofer

Core laboratories and reading centres:

Lipids – Dublin, Ireland: P Gaffney, J Nolan, G Boran. Hormones – Odense, Denmark: C Olsen, L Hansen, H Beck-Nielsen. Urine Albumin: creatinine – Amsterdam, The Netherlands: A Kok, J Dekker. Genetics - Newcastle-upon-Tyne, England: S Patel, M Walker. Stable isotope analysis - Pisa, Italy: A Gastaldelli, D Ciociaro. Ultrasound reading centre – Pisa, Italy: M Kozakova, E Ferrannini. Data Management – Villejuif, France: B Balkau, L Mhamdi. Mathematical modelling and website management – Padova, Italy: A Mari, G Pacini, C Cavaggion. Coordinating office – Pisa, Italy: SA Hills, L Mota, L Landucci.

Further information on the RISC project and participating centres can be found on www.egir.org.

Presented at the 41st EASD Annual Meeting Athens, Greece ·10-15 September 2005.